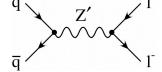
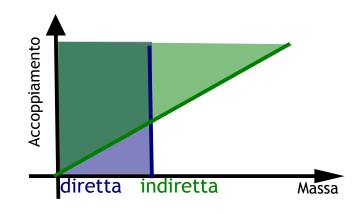
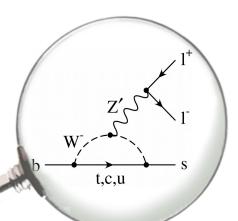


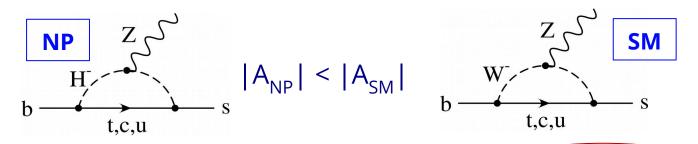
Ricerca di nuova fisica


- **Ricerca** <u>diretta</u>: produzione di nuove particelle
 - Richiede energie pari alle masse della nuova fisica → frontiera dell'energia ^q \ Z'
 - o CMS, ATLAS




Ricerca di nuova fisica

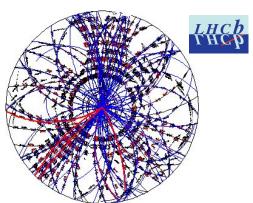
- **Ricerca** <u>diretta</u>: produzione di nuove particelle
 - Richiede energie pari alle masse della nuova fisica → frontiera dell'energia ^q \ Z'
 - CMS, ATLAS


- Ricerca <u>indiretta</u>: contributi di nuove particelle all'interno di processi noti
 - Misure di precisione: richiedono molti eventi per scovare piccole differenze rispetto al Modello Standard → frontiera dell'intensità
 - o Belle II, LHCb, NA62, ...

Misure indirette

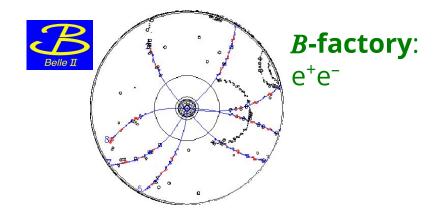
Confronto: misure vs <u>Modello Standard</u> (SM)

Fin'ora generale accordo ($< 3\sigma$) \Rightarrow i contributi della <u>nuova fisica</u> (NP) sono piccoli


Negli esperimenti misuriamo: $|A_{SM} + A_{NP}|^2 = |A_{SM}|^2 + |A_{NP}|^2 + 2Re(A_{SM} * A_{NP})^2$

- Processi **soppressi** o proibiti nel SM $\rightarrow |A_{NP}|^2$
- Processi SM sensibili alla **interferenza** con NP \rightarrow Re($A_{SM}^*A_{NP}$)

I quark *b* danno accesso a molteplici processi sensibili a NP

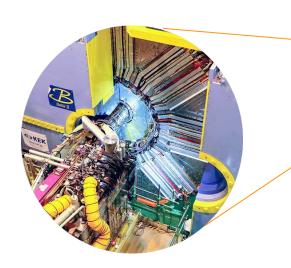

Come si producono mesoni *B*?

Collisore adronico: pp̄, pp

Interazione **forte** dei quark/gluoni nei protoni

- Alto rate di eventi
- \bigvee Produzione di tutti i tipi di adroni-B
- X Cinematica iniziale ignota
- X Molti eventi di pile-up

Interazione **elettromagnetica** tra particelle elementari

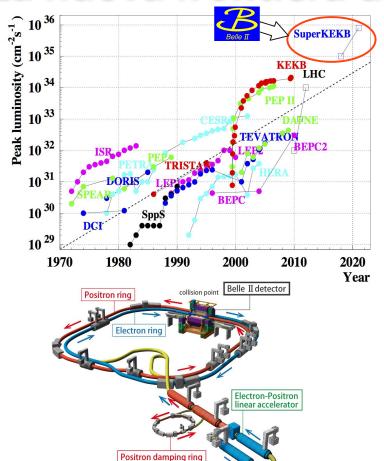

- Cinematica iniziale nota
- Puri eventi BB dalla risonanza Y(4S), senza tracce aggiuntive
- X Basso rate di collisioni utili
- \mathbf{X} Solo B^0B^0 , B^+B^-

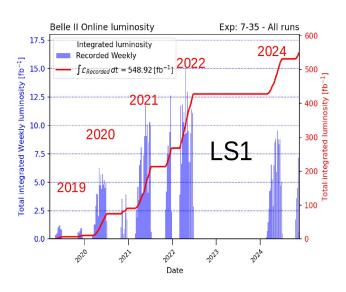
高エネルギー加速器研究機構

Kō Enerugī Kasokuki Kenkyū Kikō

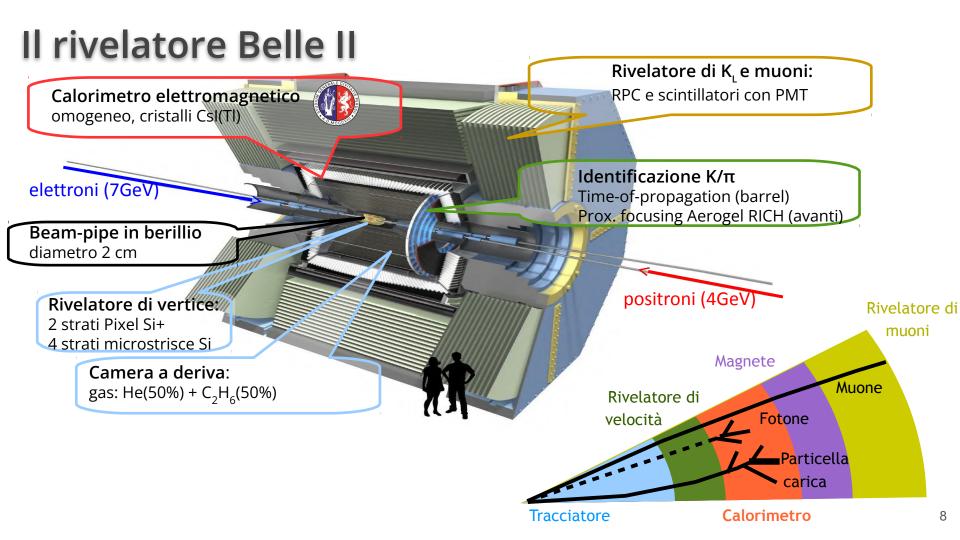
Tsukuba, prefettura di Ibaraki
 (~1 ora da Tokyo)

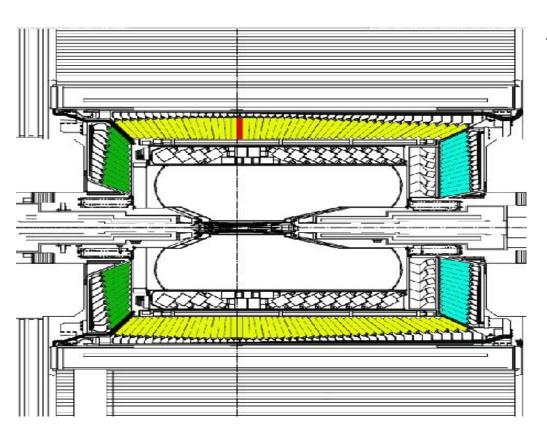
 Principale acceleratore di particelle in Giappone




®KEK

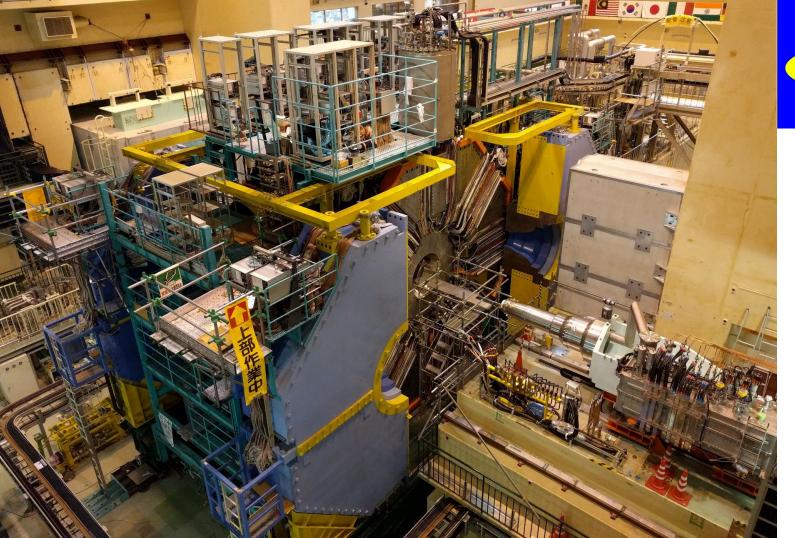
Tsukuba, Japan


La nuova frontiera dell'intensità



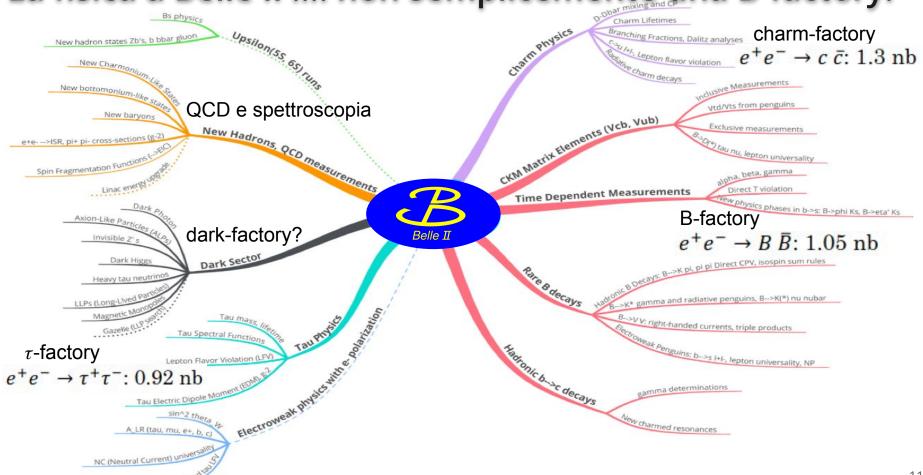
- > **500 milioni** di eventi **BB** dal 2019
- Record mondiale di luminosità! 5.1 ×10³⁴ cm⁻² s⁻¹

Il calorimetro elettromagnetico

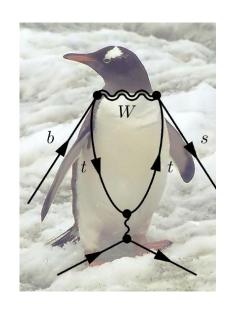


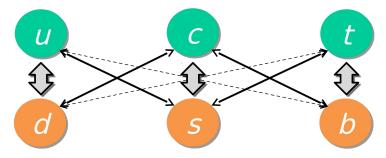
<u>Fondamentale</u> per la fisica dei *B*:

- Ricostruisce i $\pi^0 \rightarrow$ abbondanti nei decadimenti dei B
- Misura l'energia totale dell'evento (ermeticità)

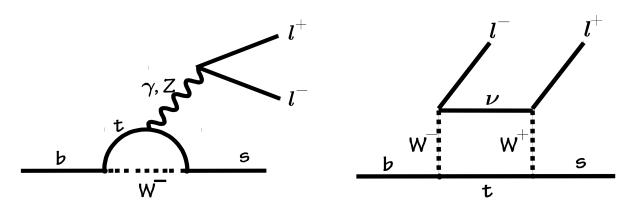


8736 cristalli di CsI(Tl) letti da fotorivelatori




La fisica a Belle II non semplicemente una B-factory!

Decadimenti rari dei B



Transizioni $b \rightarrow s$

Cambio di "**sapore**" ma stessa carica elettrica

- Avviene solo tramite loop intermedi con particelle virtuali → soppresso nel Modello Standard
- Anomalie in questi processo possono indicare nuova fisica

Ricerca di "pinguini"

KNOW YOUR PENGUINS

ADELIE NEAR THREATENED

AFRICAN

CHINSTRAP

LEAST CONCERNED

EMPEROR NEAR THREATENED

ERECT-CRESTED

FIORDLAND

GALAPAGOS ENDANGERED

GENTOO NEAR THREATENED

HUMBOLDT

KING LEAST CONCERNED

LITTLE/BLUE/FAIRY

MACARONI

MAGELLANIC
NEAR THREATENED

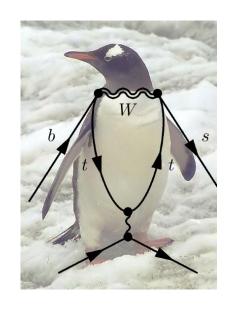
ENDANGERED

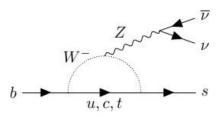
SOUTHERN ROCKHOPPER

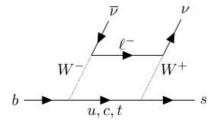
VULNERABLE

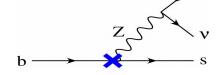
ROYAL NEAR THREATENED

SNARES VULNERABLE




YELLOW-EVED ENDANGERED


Decadimento $B \rightarrow K \nu \nu$

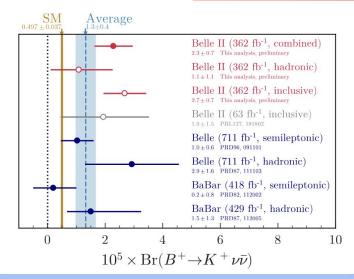


Decadimento $b \rightarrow s$

- nel MS avviene solo indirettamente
 - sensibile a nuova fisica
 - doppio Higgs, lepto-quark, ...

- vv possono nascondere una nuova particella invisibile
- <u>Predizione teorica</u> accurata
 - BR $(B^+ \to K^+ \nu \nu) = 5.0 \times 10^{-6}$

Prima evidenza $B^+ \to K^+ \nu \nu$ a Belle II


EDITORS' SUGGESTION OPEN ACCESS

Phys. Rev. D 109, 112006 - Published 6 June, 2024

Evidence for $B^+ \to K^+ \nu \bar{\nu}$ decays

I. Adachi , K. Adamczyk , L. Aggarwal , H. Ahmed , H. Aihara , N. Akopov , A. Aloisio , N. Anh Ky , D. M. Asner tal. (Belle II Collaboration)

likelihood fit. Our inclusive and hadronic analyses yield consistent results for the $B^+ \to K^+ \nu \bar{\nu}$ branching fraction of $[2.7 \pm 0.5 ({\rm stat}) \pm 0.5 ({\rm syst})] \times 10^{-5}$ and $[1.1^{+0.9}_{-0.8} ({\rm stat})^{+0.8}_{-0.5} ({\rm syst})] \times 10^{-5}$, respectively. Combining the results, we determine the branching fraction of the decay $B^+ \to K^+ \nu \bar{\nu}$ to be $[2.3 \pm 0.5 ({\rm stat})^{+0.5}_{-0.4} ({\rm syst})] \times 10^{-5}$, providing the first evidence for this decay at 3.5 standard deviations. The combined result is 2.7 standard deviations above the standard model expectation.

- Combinazione di due metodi di B-tag complementari
- **Prima evidenza (3.5 \sigma)** di un decadimento $B \rightarrow Kvv$
- Deviazione di 2.7 σ dal Modello Standard

Prima evidenza $B^+ \to K^+ \nu \nu$ a Belle II

EVENTI DI RARA BELLEZZA OSSERVATI PER LA PRIMA VOLTA DA BELLE

27 Novembre 2023

L'esperimento Belle II al laboratorio KEK in Giappone, a cui lavora una grande collaborazione internazionale di cui l'INFN è uno dei principali componenti, ha ottenuto la prima evidenza di un decadimento particolarmente elusivo del mesone B carico, una particella composta da un quark beauty (bellezza) ed un antiquark. Lo studio, presentato in anteprima lo scorso luglio alla conferenza della European Physical Society ad Amburgo, e recentemente in un seminario dedicato al CERN, è stato ora pubblicato su arxiv ed inviato alla rivista Physical Review D. Si tratta di un risultato che parla molto italiano perché l'analisi dei dati è stata condotta da un gruppo italiano della

Sezione di Perugia dell'INFN, in collaborazione con gruppi tedeschi dei laboratori KIT e DESY, francesi del CNRS di Strasburgo e con il KEK.

Decadimento Mesone B, impresa ardua ma riuscita. che cos'è?

L'UNIVERSITÀ DEGLI STUDI DI PERUGIA GIOCA UN RUOLO CHIAVE

0 **4** 9 **4** m in **0 9** □ t 8

Decadimento Mesone B, impresa ardua ma riuscita, che cos'è?

L'Università degli Studi di Perugia, attraverso il suo Dipartimento di Fisica e Geologia, ha partecipato attivamente alla scoperta di un fenomeno raro e difficile da individuare nel campo della fisica delle particelle. Questa scoperta riguarda il decadimento del mesone B carico, una particella composta da un quark beauty e un antiquark. L'esperimento, denominato Belle II, è stato condotto presso il laboratorio KEK di Tsukuba, in Giappone, e ha coinvolto una vasta collaborazione internazionale.

Decadimento del mesone B carico, la scoperta

dei ricercatori dopo venti anni di esperimenti

La professoressa Claudia Cecchi, responsabile del gruppo Belle II all'Unipg: "La qualità del lavoro e l'interesse dei risultati testimoniano la maturità della collaborazione e ci rendono ottimisti e motivati nell'affrontare le sfide del prossimo futuro"

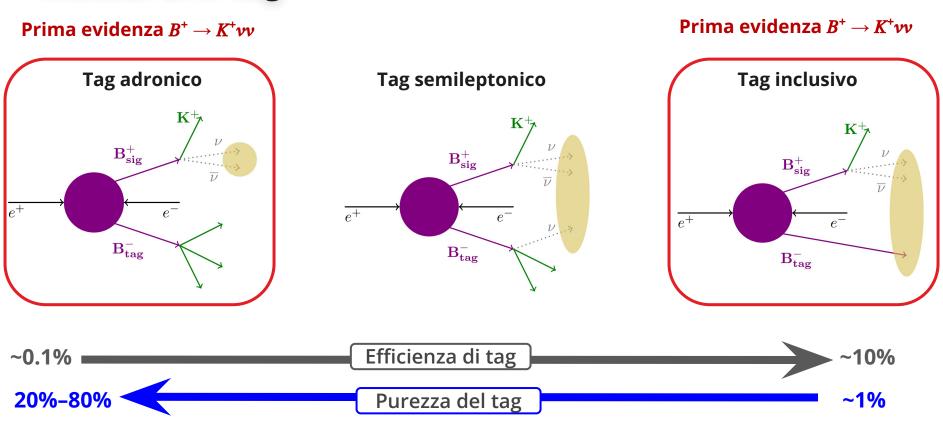
Università di Perugia annuncia con una nota che "l'esperimento Belle II nel laboratorio giapponese Kek di Tsukuba, a una settantina di chilometri da Tokyo, ha ottenuto la prima evidenza di un decadimento particolarmente elusivo del mesone B carico, una particella composta da un quark beauty e un antiquark". Lo studio, prosegue la nota, "è stato presentato recentemente in un seminario dedicato al CERN e pubblicato su arXiv, è in corso di pubblicazione sulla rivista Physical Review D".

L'esperimento, specifica l'ateneo, "è frutto di un'ampia collaborazione internazionale in cui il Dipartimento di Fisica e Geologia dell'Unipg è fra i principali protagonisti".

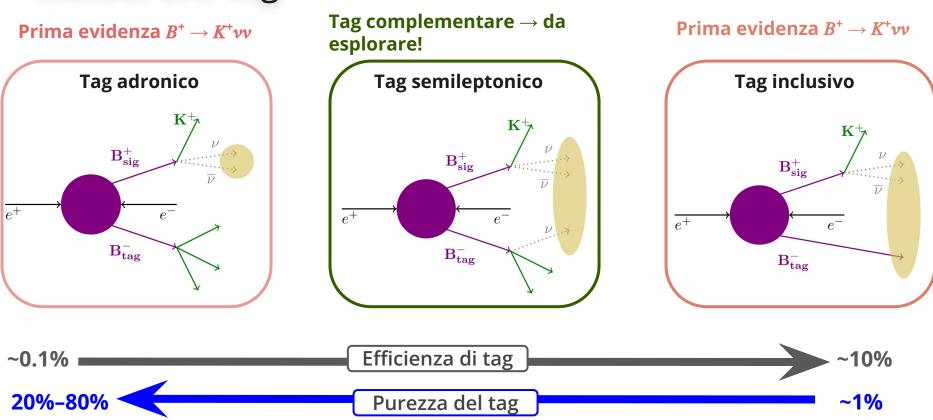
Il gruppo Belle II di Perugia

Claudia Cecchi (capogruppo) Professoressa associata

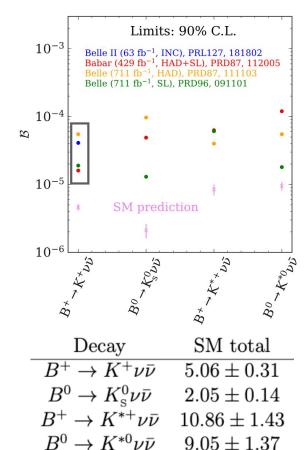
Elisa Manoni Prima ricercatrice INFN



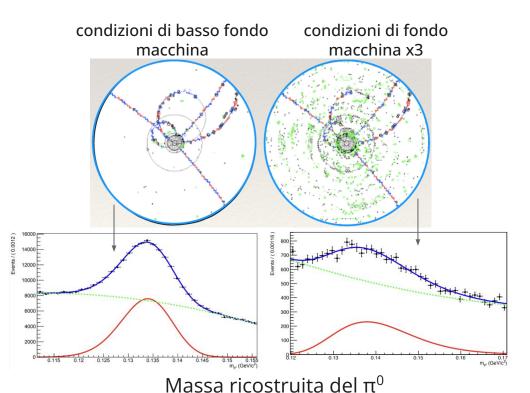
Maurizio Biasini Professore associato



Metodi di B-tag



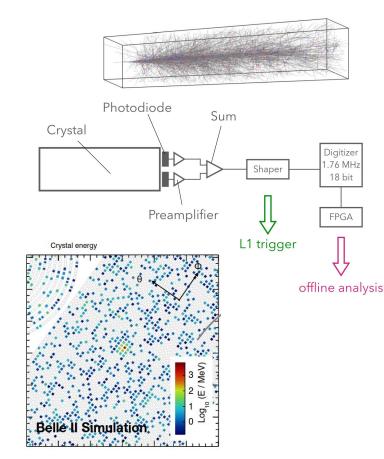
Metodi di B-tag



Proposte tesi 2025 - analisi dati $B \to K \nu \nu$

- B-tag semileptonico → complementare a tag adronico e inclusivo
- Aggiunta di stati finali: K^+ , K_S^0 , K^{*+} , K^{*0}
- Competenze:
 - buona conoscenza linguaggio python
 - analisi statistica dei dati (base)
- Interessi:
 - \circ approfondire la fisica dei B e ricerca di nuova fisica
 - o algoritmi di ML (classificatori multivariati)
 - metodi statistici avanzati

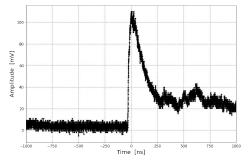
Verso l'alta intensità

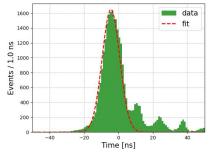


Il **fondo macchina** aumenta con la luminosità e affligge le **performance** del rivelatore. Necessario studiare:

- L'impatto nella **ricostruzione** di oggetti fisici \rightarrow per calorimetro fotoni e π^0
- Come mitigare l'impatto con un upgrade del rivelatore

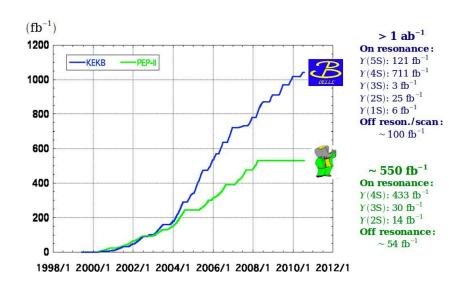
Proposte tesi 2025 - calorimetro e.m.

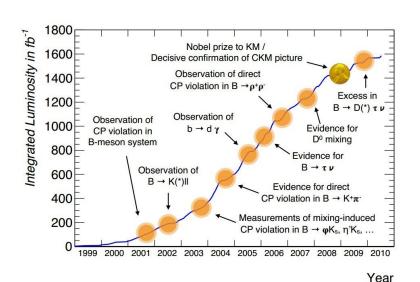

- Studio impatto dei **fondi-macchina** e implementazione della **ricostruzione** in uno scenario di upgrade
- Competenze:
 - buona conoscenza linguaggio C++
 - basi di fisica dei rivelatori, interazione rad.-materia
- Interessi:
 - approfondire il funzionamento di un rivelatore e l'elettronica di front-end
 - funzionamento software di ricostruzione di un esperimento
 - simulazioni detector



Proposte tesi 2025 - calorimetro e.m.

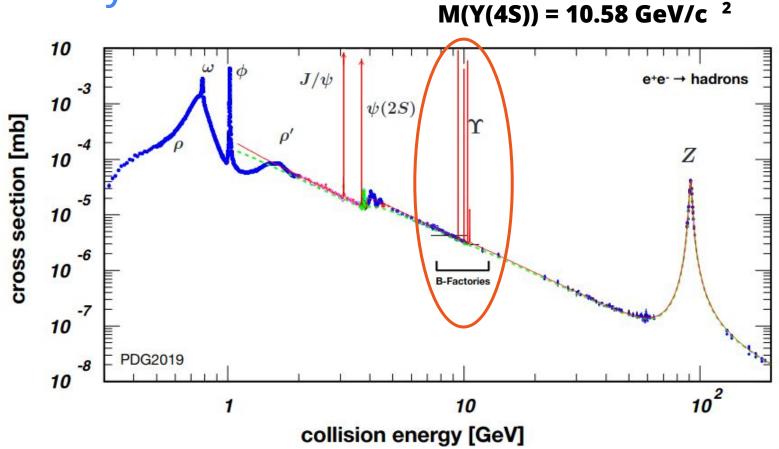
- R&D **lettura cristalli** calorimetro con fotosensori per ottimizzazione risoluzione temporale
- Competenze:
 - o esperienza di misure in laboratorio
 - elettronica di base
- Interessi:
 - o approfondire calorimetria con cristalli
 - o fotorivelatori innovativi (SiPM)
 - o sviluppo elettronica di lettura





Backup

Fisica alle B-factories



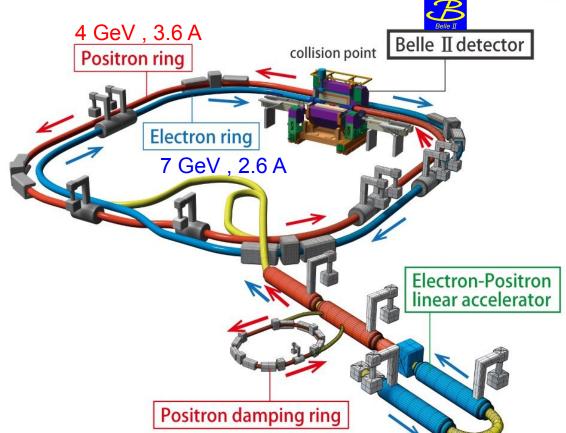
B-factory di 1^a generazione (2000-2010):

- Belle + BaBar → 1.5 ab–1
- Fondamentale conferma del meccanismo CKM
- Ancora nessuna evidenza di fisica oltre il MS...

B Factory

Esperimenti di fisica dei B (2000 – 2010)

Southern


Esperimenti di fisica dei B (> 2010)

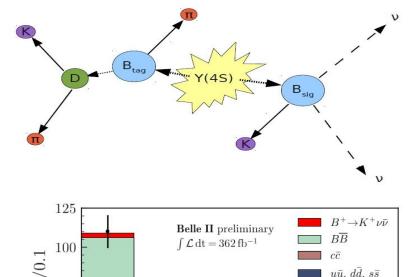
Southern

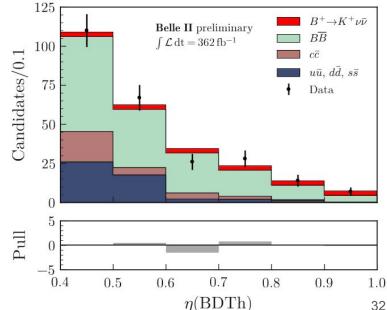
SuperKEKB (2019 → oggi)

 Infrastruttura di KEKB rinnovata

$$\circ$$
 e⁻ \rightarrow 7.0 GeV

$$\circ$$
 e⁺ \rightarrow 4.0 GeV

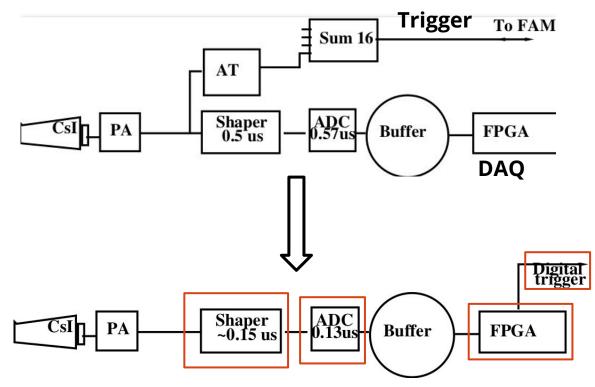

$$\beta \gamma = 0.28$$

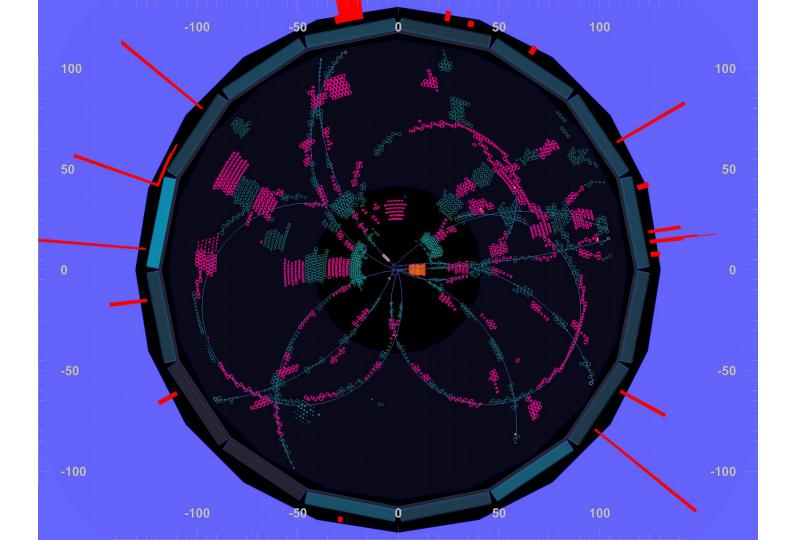

Confronto con LHCb

Property	LHCb	Belle II
$\sigma_{b\bar{b}}$ (nb)	~150,000	~1
$\int L dt$ (fb ⁻¹) by ~2024	~25	~50,000
Background level	Very high	Low
Typical efficiency	Low	High
π^0 , K_S reconstruction	Inefficient	Efficient
Initial state	Not well known	Well known
Decay-time resolution	Excellent	Very good
Collision spot size	Large	Tiny
Heavy bottom hadrons	B_s , B_c , b -baryons	Partly B_s
au physics capability	Limited	Excellent
B-flavor tagging efficiency	3.5 - 6%	36%

Decadimento raro $B^+ \to K^+ \nu \nu$

- Ricostruzione B_{tag} con opportuno algoritmo.
 Due metodi complementari:
 - a. "tag" adronico
 - b. "tag" inclusivo (new!)
- 2. Per il B_{sig} si ha solo un K carico
- 3. L'energia mancante dal detector deve essere compatibile con quella dei due neutrini
- 4. Si richiede che l'evento non abbia **particelle aggiuntive**
- 5. Si sfruttano metodi di **analisi multivariata** per combinare più informazione possibile





Upgrade elettronica calorimetro

Elettronica veloce e ricostruzione ottimizzata

- Tempo di shaping 500 ns → 150
- **ADC** 1.7 MHz \rightarrow 7.9 MHz
- Nuove **FPGA** per ricostruzione online
- Trigger digitale su singolo cristallo

